Workshop

Workshop on Renewable Energies and Energy Efficiency in water treatments

EERES4WATER Project (EAPA_1058/2018) 26 September 2022

Assessment of the integration of a MED-TVC plant into a solar tower with Brayton cycle

Dr. J. Bonilla Dr. Patricia Palenzuela <u>Dr. Bartolomé Ortega-Delgado*</u> MSc. J.M. Serrano Dr. Diego-César Alarcón-Padilla

Solar Thermal Applications Unit (CIEMAT-PSA)

Dr. Bartolomé Ortega Delgado Solar Thermal Applications Unit E: bartolome.ortega@psa.es

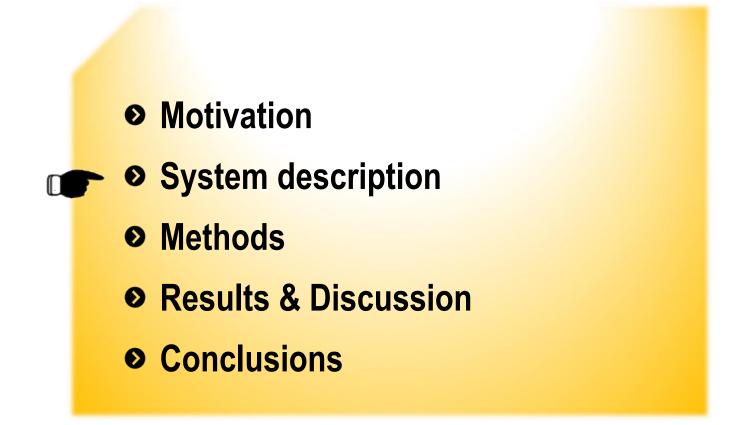
MINISTERIO DE CIENCIA E INNOVACIÓN

Energéticas, Medioambientales y Tecnológicas

Image: Motivation

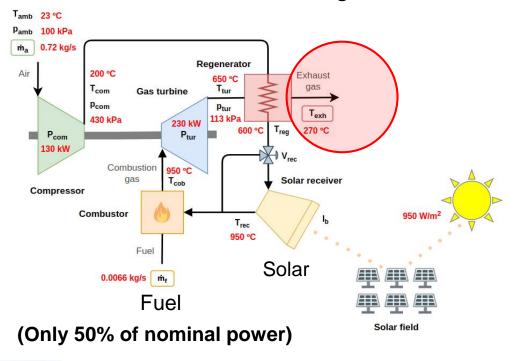
- System description
- Methods
- Results & Discussion
- Conclusions

Motivation

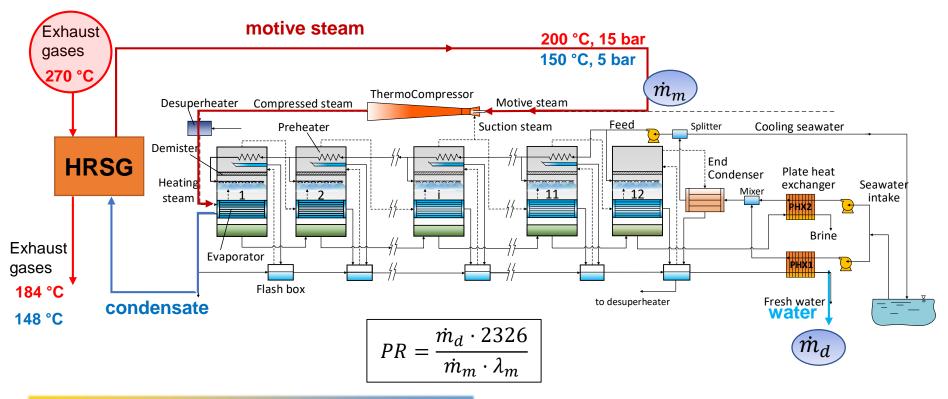

- SOLTERMIN Project ("Solar thermal solutions for integration in industrial processes"), funded by Spanish Government Call RETOS 2017 (ENE2017-83973-R). Duration: 4 years
- Objective: development of <u>compact and optimized solutions</u> of concentrated solar thermal energy technologies suitable for supplying heat in industrial processes

 Subtask 4.3 : Analysis of a hybrid solar mini-tower + Brayton cycle + multi-effect distillation unit

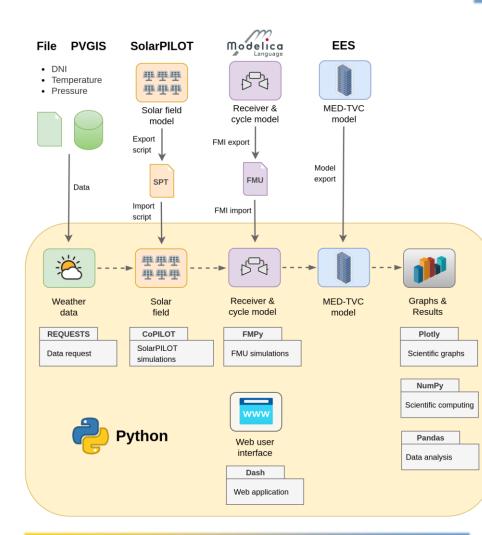
- Non-consumption of water by the power cycle
- Capacity to integrate high T desalination systems (more efficient), no penalization of power cycle eficiency
- High modularity and capability of developing small power systems for areas with water scarcity

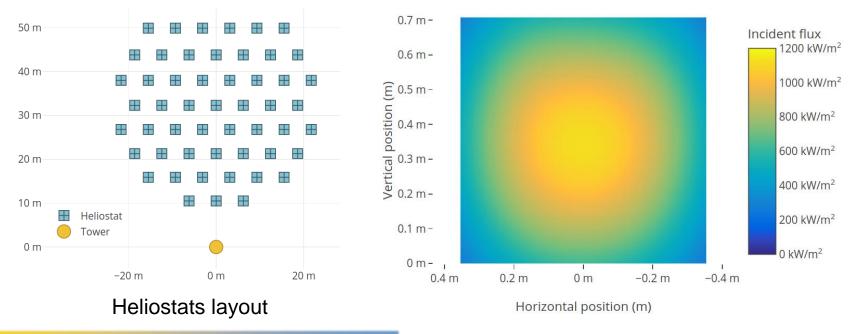


 The system proposed is based on the AORA Solar Central Receiver tower system located at Plataforma Solar de Almería


100 kW hybrid solar/gas turbine.
 52 heliostats. Tower height: 30 m

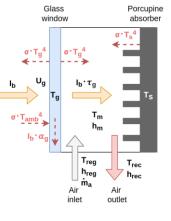
 Exahust gases from Brayton cycle are directed to a heat recovery steam generator (HRSG) where steam is generated to drive the MED-TVC unit




- Simulation structure:
 - Input weather data (PVGIS)
 - Solar field model (SolarPilot)
 - Receiver & Brayton cycle model (Modelica)
 - MED-TVC model (EES)
- Python has been used to integrate all the models and add a GUI, which allows to perform the simulations and generate the results
- The MED-TVC model has not been yet integrated

Solar Field model

- The SolarPILOT tool from NREL was used to model the heliostat field
- It can determine <u>hourly distribution</u> of **concentrated solar irradiance** onto the receiver



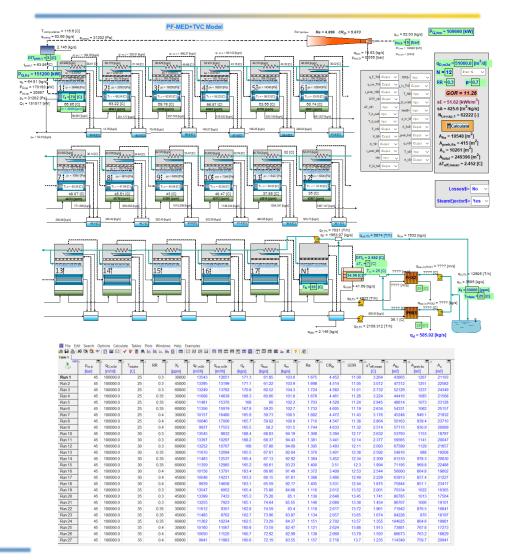
Receiver and Brayton cycle models (Modelica) ۲

Compressor $p_{com} = p_{amb} \cdot PR_{com}$ $P_{com} = \dot{m}_a \cdot c_{p.com} \cdot (T_{com} - T_{amb})$

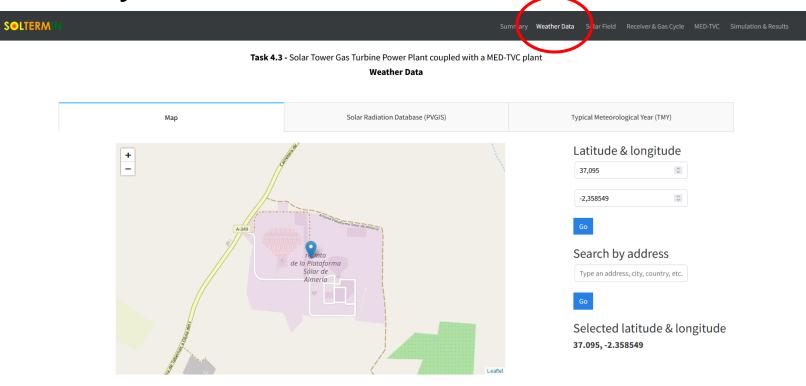
Gas Turbine $T_{com} = T_{amb} \cdot \left(1 + rac{x_{com} - 1}{n_{com}}
ight) \qquad \qquad T_{tur} = T_{cob} \cdot \left(1 - \eta_{tur} \cdot \left(1 - rac{1}{x_{tur}}
ight)
ight)$ $P_{tur} = (\dot{m}_a + \dot{m}_f) \cdot c_{p,tur} \cdot (T_{cob} - T_{tur})$ $P_{net} = P_{tur} - P_{com}$

430 kPa Pcom Lines of constant pressure Temperature 270 °C 100 kPa 23 °C Entropy

Glass Window $I_b \cdot \alpha_g + \sigma \cdot (T_{amb}^4 + T_s^4 - 2 \cdot T_g^4) = U_g \cdot (T_g - T_{reg})$ Absorber


$$G = rac{m_a}{A_s}$$
 $T_s = rac{T_{reg} + T_m}{2}$ Cavity $h_m - h_{reg} = rac{U_g \cdot (T_g - T_{reg})}{G}$

 $T_{reg} = T_{com} \cdot \frac{c_{p,com}}{c_{p,reg}} + \frac{\eta_{reg}}{c_{p,reg}} \cdot (T_{tur} \cdot c_{p,tur} - T_{com} \cdot c_{p,com})$ $G = \frac{I_b \cdot \tau_g + \sigma(T_g^4 - T_s^4)}{h_{rec} - h_m} \qquad \qquad T_{exh} = T_{tur} \cdot \frac{c_{p,tur}}{c_{n,exh}} - \frac{\eta_{reg}}{c_{p,exh}} \cdot (T_{tur} \cdot c_{p,tur} - T_{com} \cdot c_{p,com})$ Combustor $T_{cob} = T_{rec} + rac{\eta_{cob} \cdot LHV}{c_{n\,cob}} \cdot rac{\dot{m}_f}{\dot{m}_a + \dot{m}_f}$


- MED-TVC model
- A first-principles model has been implemented in Engineering Equation Solver (EES)
- Polynomial equations have been obtained by performing simulations using the MED-TVC <u>operation model</u>
- The results from the simulations have been fitted by the Matlab tool <u>MultiPolyRegress</u>

GUI in Python

GUI in Python

OLTERM IN					Summary Weath	er lata Solar Field Re	ectiver & Gas Cycle MED-TVC	Simulation & Resu
				Gas Turbine Power Plant coupled v Golar Field: Heliostats & Tower	with a MED-TVC plant			
Diagram	Р	icture	Discretization	Discretization study	Atmosphere	Heliostats	Tower & Receiver	Layout
		Grid			Parameter		Value	Units
		25 x 25			Heliostat name		AORA Solar	-
					Focusing type		At slant	-
	24	5x25, 20 March 22, 02 PM	333 14 kW		Canting method		On-axis at slant	-
		, , , , , , , , , , , , , , , , , , ,	,		Number of heliostats		52	-
7 m -	_				Heliostat height		4	m
ām-				Incident flux	Heliostat width		4	m
					Heliostat reflectivity		0.94	%
5 m -				1000 kW/m ²	Soiling factor		0.95	%
5 m - 4 m -				800 kW/m ²	Number of heliostat facets	- X	2	-
3 m -				600 kW/m ²	Number of heliostat facets	- Y	2	-
3 m - 2 m -				400 kW/m ²	Facets' gap - X		0.005	m
2 m -					Facets' gap - Y		0.005	m
m-				200 kW/m ²	Ratio of reflective area to pr	rofile	1	%
) m				0 kW/m ²	Elevation pointing error		0	rad
1 m	0.5 m	0 m	-0.5 m	-1 m	Azimuth pointing error		0	rad
		Horizontal position (m)			Surface slope error in X		0.00153	rad
					Surface slope error in Y		0.00153	rad
					Reflected beam error in X		0.00153	rad
					Reflected beam error in Y		0.00153	rad

Optical error type (SolTrace only)

References

Solar Power tower Integrated Layout and Optimization Tool (SolarPILOT) - NREL Demonstrating SolarPILOT's Python API Through Heliostat Optimal Aimpoint Strategy Use Case - NREL SolarPILOT API (CoPILOT) - NREL SolarPILOT User's Manual - NREL

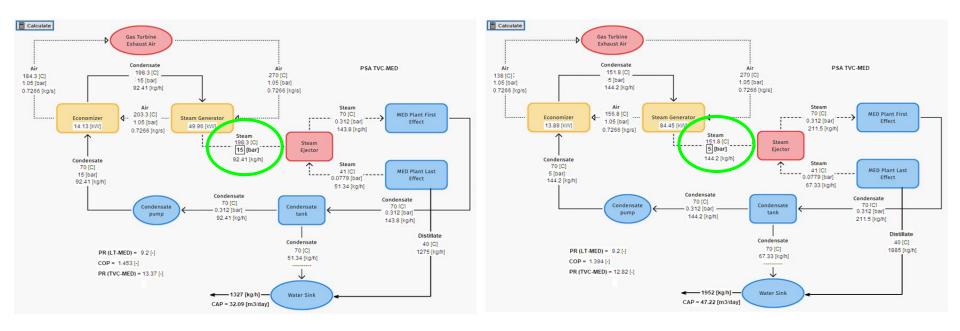
Workshop on Renewable Energies and Energy Efficiency in Water Treatments EERES4WATER Project, September 26, 2022

Gaussian

GUI in Python

SOLTERMIN					Summary Weather Data	Solar Field	Receiver & Gas Cycle	MED-TVC	Simulation & Results
		Task 4.3 - S		wer Plant coupled with a ME n & Results	D-TVC plant	0			
						Sim	nulate		
			1 Jan 2022 -	tes → 15 Jan 2022					
DNI	Power over receiver	Mass flow rates	Temperatures	Pressures	Power		Performance		Receiver
Performance summ	arv								

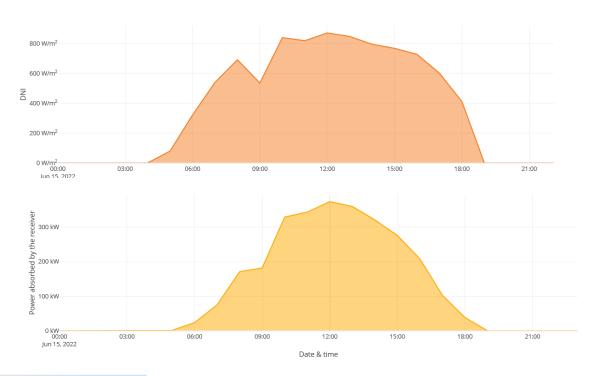
Date & time


Motivation

- System description
- Methods
- Results & Discussion
 - Conclusions

Results & discussion

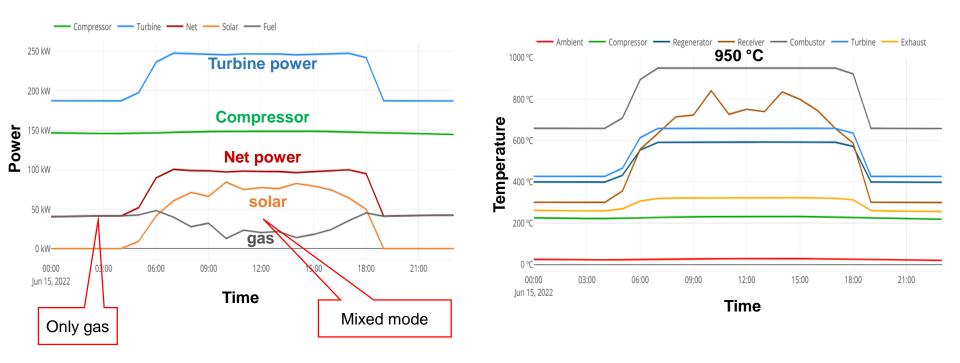
- Motive steam pressure analysis MED-TVC
 - 15 bar, 198.3 °C ⇒ 32 m³/d, PR = 13.37
 - 5 bar, 151.8 °C ⇒ 47.2 m³/d, PR = 12.8



Results & discussion

Study case (only power)

- Location: PSA, Almería
- Date: June 15


	Min	Мах	Avg	Sum
DNI	0.00 W/m ²	872.13 W/m ²	369.10 W/m ²	8.86 kW/m ²
Power receiver	0.00 kW	389.11 kW	56.49 kW	20.34 kkW
Latitude	37.095000			
Longitude	-2.358549			
Start	15 Jun, 2022			
End	15 Jun, 2022			
Source	PVGIS			
Elevation	499.0 m			
Radiation DB	PVGIS-SARAH			
Meteo DB	ERA-Interim			
Horizon DB	DEM-calculated			

Results & discussion

Study case

A-**

Motivation

- System description
- Methods
- Results & Discussion
- Oconclusions

Conclusions

- A simulation tool able to estimate the <u>annual power and</u> <u>water</u> produced in a hybrid solar mini-tower with <u>multi-effect</u> <u>distillation</u> unit is being developed
- The results for a simulation period at any specific location includes power distribution over the receiver, <u>temperature profiles</u>, and *performance* indicators
- Two different motive steam pressures have been analyzed in the thermal vapor compressor in a preliminary analysis: 5 bar and 15 bar. The lowest motive steam pressure leads to the higher water production (47 m³/d)

Workshop on Renewable Energies and Energy Efficiency in Water Treatments EERES4WATER Project, September 26, 2022

Acknowledgment

This research received funding from the Spanish government in the framework of the SOLTERMIN project (Ref. ENE2017-83973-R)

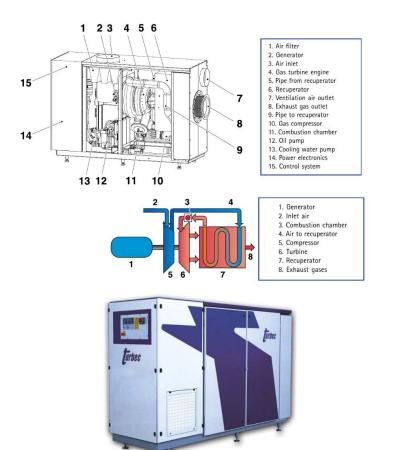
Thank you very much for your attention Questions?

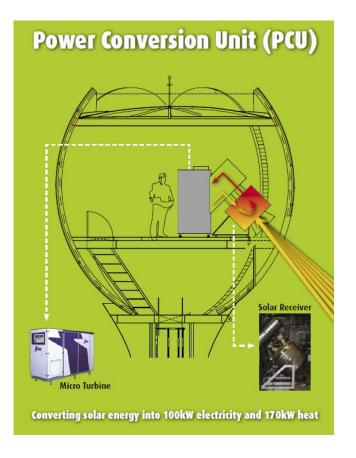
Dr. J. Bonilla Dr. Patricia Palenzuela <u>Dr. Bartolomé Ortega-Delgado*</u> MSc. J.M. Serrano Dr. Diego-César Alarcón-Padilla

Solar Thermal Applications Unit (CIEMAT-PSA)

*bartolome.ortega@psa.es

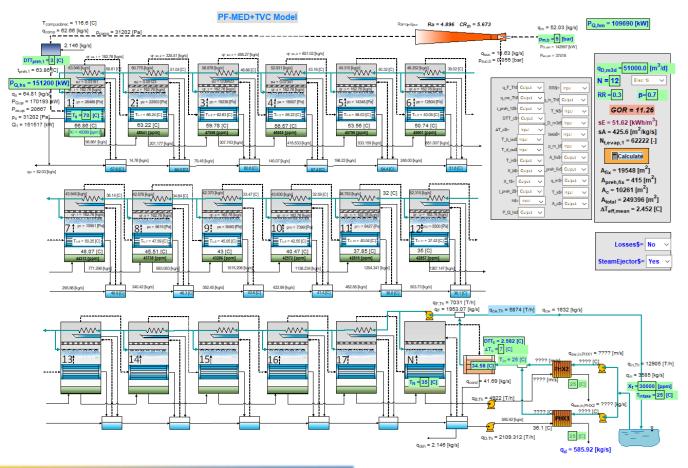
MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES


y Tecnológicas



Turbec T100 Natural Gas Microturbine System

Technical description



MED-TVC model

