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3 CIEMAT - Plataforma Solar de Almeŕıa, javier.bonilla@psa.es

Abstract

This paper proposes a control strategy for a solar
desalination plant included in a micro-grid frame-
work. The goal of the controller is to maintain a
volume of distillate despite the water demanded by
a greenhouse and taking into account solar irradi-
ance disturbances. In a top layer, the temperature
setpoints are calculated to assure enough energy
and reach the water requirements. NMPC is used
to estimate the optimal solar field setpoints and a
PI controller to choose the setpoint for the distil-
late unit. In a second layer, these two tempera-
tures are controlled by the solar field pump and by
a three-way regulation valve respectively. Simula-
tion results are included to compare the proposed
strategy with an open-loop operation.

Keywords: NEPSAC, feedback linearization,
multi-effect plant.

1 INTRODUCTION

Modern agricultural systems are characterized by
the intensive and optimal use of land and wa-
ter, turning agricultural exploitation into a semi-
industrial concept. Greenhouses are systems suit-
able both for zones with unfavorable climatic con-
ditions - allowing crop growth regardless of the
ambient temperature, and for regions with less re-
strictive weather - with the aim in this case of
increasing crop productivity and improving fruit
quality. The greenhouse environment is ideal for
farming because these variables can be manipu-
lated to achieve optimal growth and plant devel-
opment. This manipulation requires energy con-
sumption, depending on the crop’s physiological
requirements and, additionally, depending on the
production patterns adopted for yield quantity
and timing. Crop growth is primarily determined
by climatic variables of the environment and the
amount of water and fertilizers applied through
irrigation. Therefore, controlling these variables
allows the control of the growth. The produc-

tivity optimization through efficient and adequate
irrigation is a basic objective in those countries
with water limitations. Furthermore, this resource
limitation is made worse due to the recent rapid
expansion of the surface area occupied by green-
houses in the Mediterranean Basin. Consequently,
this has also led to water becoming a more im-
portant consideration in the sustainability of the
greenhouse-based system in south-eastern Spain.
This water deficit has been progressively deplet-
ing the aquifers in the area [19]. Eighty per cent
of the irrigation water used in Almeŕıa (Spain)
comes from underground sources, leading to lo-
calized overexploitation of aquifers [7]. Over the
last few years, as in other arid and semi-arid ar-
eas of the world, it has been promoted the use of
alternative water sources such as purified water,
rain and condensed water collection as a secondary
source, the reuse of drainage water, the develop-
ment of new technologies related to water-use effi-
ciency such as advanced irrigation controllers, and
sea water desalination.

In this line, the idea of integrating solar desalina-
tion systems in the agricultural environment has
been significantly considered with the aim of deal-
ing with water limitations in some regions of the
planet. One of the most simple and cheap tech-
niques, the solar stills [10], can be easily combined
with greenhouses [4]. This kind of distillation pro-
cesses are usually located on the roof of green-
houses where a glass system is installed. Seawater
is pumped to this cover where vapor is produced
and raised by natural convection to the top glass
where it condenses. The water falls down the roof
being finally collected. As explained in [4], water
produced by a solar still is not enough for grow-
ing a crop. Moreover, operational reasons, such as
salt accumulation, have lead to the non real appli-
cability of this method. A relative new concept is
the use of seawater for cooling and humidification
[8]. The purpose is to create adequate tempera-
ture conditions for the crops. Solar energy is used
in an evaporation process to humidify water. The
process is explained in [12]. The air inside the
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greenhouse is cooled due to a first evaporator lo-
cated at the front wall of the greenhouse. The
air passes through the crops and reaches a sec-
ond evaporator with hot water flowing inside it.
Therefore, the air becomes hotter and more hu-
mid. This air passes finally through a condenser
obtaining water from the air stream. Based on
this concept, a new design has been recently pro-
posed [27] which includes an improved solar water
heater.
This paper deals with a different combination of
greenhouse and solar desalination. It consists in
taking advantage of the water produced in a so-
lar multi-effect desalination, MED, plant to feed
a greenhouse located in the southeast of Spain.
The challenge is to properly operate the desalina-
tion plant to produce the daily water demanded
by the crop.
Most of the optimization algorithms applied to de-
salination processes deal with the design of cogen-
eration plants [9, 18, 23, 26]. The objective func-
tion includes thermodynamic and environmental
issues. However, few optimization problems are
focused on satisfying a variable water demand. In
[22], for example, a nonlinear programming, NLP,
problem is defined to reduce operating costs in a
reverse osmosis, RO, system. The outputs of the
optimization are the number of membranes used
in the operation, the feed pressure and the flow.
In the present paper a Nonlinear Model Predic-
tive Control, NMPC, is applied to find a proper
temperature setpoint in a solar field coupled to a
desalination process. The idea is to maintain a
desired volume of distillate obtained with a MED
unit despite the water consumption by irrigation
in a greenhouse.

2 CASE STUDY

The case study explored in this paper is a micro-
grid framework in which two interconnected
plants must be managed; a greenhouse and a
solar desalination plant (see Fig.1). On one hand,
the greenhouse daily demands fresh water for
irrigation purposes and, on the other hand, a
solar desalination plant produces distillate water
in a multi-effect distillate unit. An intermediate
storage tank is assumed to be located between
the production process and the consumer system.

2.1 SOLAR DESALINATION
FACILITY

The desalination plant used in this study is the
AQUASOL system sited at Plataforma Solar de
Almeŕıa in the southern of Spain. This pilot plant
includes a MED unit coupled with a solar collector

Figure 1: Solar desalination plant coupled with a
greenhouse.

field1. As shown in Fig.1, seawater is pumped to-
wards the first cell effect (or heater) of the MED.
There, part of the water is evaporated and the rest
of the seawater goes down to the following cells by
gravity (a detailed description of the MED unit
can be found in [11]). The required heat for the
heater is provided by the solar field that supplies
energy to the storage system (two 12 m3 water
storage tanks). A three-way regulation valve, VM ,
is used to reach the nominal temperature at the
inlet of the first effect, by mixing water from the
primary tank with that returned from the heater.
When the solar field temperature exceeds the one
in the primary tank, the on-off valve position, Vt,
is changed to connect these components. Other-
wise, the solar field should be connected to the
bottom part of the secondary water tank to avoid
cooling down the primary water tank.

2.2 GREENHOUSE ENVIRONMENT

The research data used in this work have been
obtained from greenhouses located in the Exper-
imental Station of the Cajamar Foundation, El
Ejido, in the province of Almeŕıa, Spain (2o43’
W, 36o48’ N, and at a 151-m elevation). The
tomato crops are grown in a multi-span ”Parral-
type” greenhouse (Fig.2). The greenhouse has a
surface area of 877 m2 (37.8 x 23.2 m) with a
polyethylene cover. The daytime air temperature
and humidity are managed using the top and side
windows which are controlled via a PI controller
[17]. In addition, the biomass-based heating sys-
tem allows one to control the night-time air tem-
perature [20]. Setpoints for both systems are es-
tablished at 24 ◦C, and 10 ◦C for the ventilation
and heating, respectively. Throughout the experi-
ments, the following inside climatic variables were
continuously monitored: air temperature and rela-
tive humidity (Vaisala HMP45A), solar radiation
(Delta-Ohm LP PYRA 03), and photosynthetic

1Although the system was designed to operate also
with fossil energies [1], this work only deals with the
solar operation mode.
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Figure 2: Greenhouse facilities used for the experiences performed in this work. From left to right and
from top to bottom: Greenhouse, Dropper, Solar and PAR radiation device at the outside, Irrigation
system, Solar and PAR radiation device inside the greenhouse, and the tomato crop lines.

active radiation (PAR, Kipp&Zonen PAR-Lite).
Outside the greenhouse a meteorological station
was installed, in which air temperature, relative
humidity, solar and photosynthetic active radia-
tion, rain detection, wind direction, and velocity
measurements were taken. The crop was grown
in coconut coir bags with six plants and three
droppers each. The irrigation is automated by a
demand tray, which is formed by two crop bags.
Drainage water is set at 20 % volume. All data are
recorded every minute with a personal computer.

3 SOLAR DESALINATION
PLANT MODEL

The model of the solar desalination plant is di-
vided in three main components; the solar field,
the storage system and the MED unit. Fig.3
shows a diagram with the connections between
these models. A description of the variables in-
volved is included in Table 1.

The solar field has been characterized using a con-
centrated parameter model based on energy bal-
ance, and the storage tanks have been charac-
terized with models based on energy and mass
balances. A description of these dynamic mod-
els can be found in [16]. With the aim of reduc-
ing the computational time of the whole model,
a first-order model has been experimentally ob-
tained to predict the distillate production (the dis-
tillate flow rate, qd) as a function of the inlet MED
temperature, TiM , and mass flow rate, ṁM ,:

qd(s) =
0.07

120s+ 1
e−100sTiM (s)+

0.021

60s+ 1
e−40sṁM (s)

(1)

Figure 3: Connection between the submodels of
the solar desalination plant.

Symbol Description Units

D
Volume of water in

[m3]
the distillate tank

I Irradiance [W/m2]
ṁ Mass flow rate [kg/s]
tm Sampling time [s]
T Temperature [℃]
q Volumetric flow rate [m3/h]
Sub. Description Sub. Description
0 Initial value a Ambient
d Distillate F Solar field
i Inlet M MED
o Outlet p Primary tank
Superscript Description
∗ Setpoint

Table 1: Nomenclature

4 CONTROL SYSTEM

The idea behind the controller proposed in this
section is to maintain a desired volume of distil-
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late, D∗, by regulating the temperatures in the
solar field and in the MED heater.

This controller (see Fig. 4) includes two loops:

• Loop 1: To reach the desired distillate de-
mand, the solar field must deliver enough
thermal energy. A NMPC is used to solve an
optimization problem, calculate a reference
for the outlet solar-field temperature and as-
sure the required distillate production. This
controller must be applied over the tempera-
ture instead of the water flow rate to include
the following constraints:

1 ◦C ≤ T ∗
oF − TiF ≤ 20 ◦C, (2)

Tp ≤ T ∗
oF ≤ 95 ◦C. (3)

The solar-field outlet-inlet temperature dif-
ference must be lower than 20 ◦C to avoid
stress in the absorber tubes, a minimum
temperature difference must be guaranteed
to avoid cooling down the water, ToF must
be under 95 ◦C to avoid evaporation and it
should be higher than Tp to not to cool down
the stored water.

The outlet solar-field temperature, ToF , may
be controlled by varying the solar-field water
mass flow rate, ṁF . Several algorithms have
been tested in this plant, obtaining successful
results [2, 13, 14, 15, 25, 21]. In this case, a
feedback linearization control, FLC, is used
[13].

• Loop 2: Since the distillate production de-
pends mainly on the thermal energy delivered
to the first effect, if nominal conditions are
assumed in the MED mass flow rate, ṁM ,
a controller in TiM is required to reach the
desired demand. For this purpose, two con-
secutive PI’s are included. The first one cal-
culates a reference temperature for the MED
inlet water, T ∗

iM . This temperature is con-
trolled with the second PI using the aperture
of valve VM as control variable.

Notice that there is a maximum temperature,
to avoid scale formation in the heater, 72 ◦C.

Figure 4: Control scheme

A minimum temperature is also defined to as-
sure a minimum distillate production: 55 ◦C
≤ T ∗

iM ≤ 72 ◦C.

4.1 NONLINEAR MPC

Model predictive control, MPC, is a typical con-
trol methodology that uses a model of the pro-
cess to estimate the outputs at future time values
ŷ(t+ k|t) and calculate the optimal future inputs.
In general, MPC algorithms consist of applying a
control sequence that minimizes a cost function:

J =

N2∑
j=N1

δ(j)[ŷ(t+ k|t)−

ω(t+ j)]2 +

Nu∑
j=1

λ(j)[∆u(t+ j − 1)]2, (4)

where ω is the reference signal, ∆u is the control
effort obtained from cost function minimization,
N1 is the minimum prediction horizon, N2 is the
maximum prediction horizon, Nu is the control
horizon and δ(j) and λ(j) are weighting sequences
that penalize future tracking errors and control
efforts, respectively, along the horizons.

Although most of the MPCs are applied to linear
models, some techniques have been developed to
obtain the future control actions using a nonlin-
ear model of the process [3]. In this work, the
NEPSAC approach has been chosen [5] because it
uses directly the nonlinear prediction model with-
out local linearization and it solves the optimiza-
tion problem in a low computational time. The
idea behind this technique is to use the nonlinear
model to predict the base response and the step
response.
For lineal systems, the superposition principle is
valid:

y(t+ k|t) = ybase(t+ k|t) + yopt(t+ k|t), (5)

where ybase(t + k|t) is the effect of a base control
sequence, and yopt(t+ k|t) is the effect of the op-
timized future control actions. This second com-
ponent is the result of unit impulse (hi) and step
responses (gi):

yopt(t+ k|t) =hk∆u(t|t) + hk−1∆u(t+ 1|t) + ...

+ gk−Nu+1∆u(t+Nu − 1|t). (6)

Using matrix notation, the vector of outputs is,

Y = Ȳ + GU, (7)

where Ȳ, is the vector of base response outputs
from t + N1 through t + N2, U is the vector of
future controls up to t + Nu − 1 and G is the
(N2 − N1 + 1)xNu matrix with impulse and step
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response coefficients. Minimizing the cost func-
tion 4, a closed form solution can be obtained for
the unconstrained case [6]:

U∗ = (GTG + λI)−1GT(R− Ȳ). (8)

The control input applied to the plant is,

u∗(t) = ubase(t|t) + ∆u(t|t) = ubase(t|t) + U∗(1).
(9)

In the case of nonlinear systems, since the super-
position principle is no longer valid, the NEPSAC
approach proposes to find iteratively a control in-
put ubase(t+k|t) as close as possible to u∗(t+k|t)
so that yopt(t + k|t) ≈ 0 and the superposition
principle is not involved. The procedure is the
following one:

1. choose an initial ubase(t + k|t), for example
ubase(t+ k|t) = u∗(t+ k|t− 1),

2. calculate ∆u(t+ k|t) as explained for the lin-
ear case,

3. if |∆u(t + k|t)| < ε, where ε is close enough
to zero, then u∗(t + k|t) = ubase(t + k|t) +
∆u(t+ k|t) and the suboptimal control input
is u∗(t+k|t), otherwise make ubase(t+k|t) =
u∗(t+ k|t) + ∆u(t+ k|t) and go to step 2.

4.2 FEEDBACK LINEARIZATION
CONTROL

The purpose of feedback linearization control is
to transform a nonlinear system into a linear one
using a nonlinear feedback that makes up for non-
linearities in system behavior [24]. This technique
was applied to AQUASOL solar field to track a de-
sired temperature reference using the water mass
flow rate as the control signal [13]. Since experi-
mental results showed successful results, this con-
troller has been used in this work to follow the
optimal references estimated by the NMPC.

4.3 PI CONTROLLERS

The second loop includes two PI controllers with
anti-windup. The first one is used as a reference
governor to choose the inlet MED temperature
setpoint, T ∗

iM . The parameters of this controller
are: Kp=20 ◦C/m3, Ti=1200 s and Tt=15 s. The
temperature setpoint obtained with this controller
is reached using another PI controller that regu-
lates the valve aperture, VM . In this case, the pa-
rameters are: Kp=−2 %/◦C, Ti=60 s and Tt=8 s.

5 SIMULATION RESULTS

In this section, a simulation is included to demon-
strate the advantages of using the controllers to

calculate the solar-field and MED temperature
setpoints. The results are compared with the case
of using these setpoints fixed at 72℃ (which is the
maximum value considered as input in the MED
unit).

With the aim of scaling the greenhouse water con-
sumption to a real case, 6 greenhouses have been
considered in the simulation. Therefore, the real
consumption values obtained from the greenhouse
have been multiplied for 6. Taking into account
that typical daily consumption is around 1.3 m3,
and assuming two days of storage capacity in case
of cloudy days, the setpoint in the distillate vol-
ume has been established to D∗ = 6 · 1.3 · 2 =
15.6 m3.

The NMPC strategy was tested using the follow-
ing tuning parameters: tm = 300 s, N1 = 1 s, N2

= 600 s, δ = 0 and λ(j) = 10−6.

5.1 A TYPICAL OPERATION DAY

In this example the aim is to observe the controller
response when the output is near the reference
level. Real irradiance and water consumption are
depicted in Fig.5, besides the volume of distillate
obtained both with the controller and the open
loop case.

At the beginning of the simulation, NMPC pre-
dicts that the optimal temperature reference is
the minimum one (see Fig.6 (a)). Although the
water mass flow rate is saturated at its maximum
value (Fig.6 (c)) trying to follow the reference, the
setpoint is not feasible with those conditions. Be-
fore reaching the distillate reference, T ∗

oF starts to
increase and ṁF decreases. Therefore, distillate
production is slightly reduced because less ther-
mal power is being delivered to the storage system.
Nevertheless, at time 50506 s, the greenhouse ir-
rigation system is turned on and the volume of
stored distillate drastically decreases. For this rea-
son, the optimal values obtained with NMPC are
again near the minimum one. This procedure is
repeated until the end of the simulation. For the
open-loop case, ṁF is saturated for most part of
the time (Fig.6 (d)) trying to follow the tempera-
ture setpoint (Fig.6 (b)).

The second control loop is shown in Fig.7.
Whereas the MED setpoint is fixed for the case
of the open-loop case (Fig.7 (b)), this value varies
continually ((Fig.6 (a)) when the controller is ap-
plied and the volume of distillate is near the de-
sired value. The aperture of the valve decreases
when more water coming from the primary tank
is needed to reach the desired temperature at the
inlet of the MED unit.

Electricity consumption in the solar-field water
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Figure 5: Irradiance and volume of distillate in a typical operation day.

3.5 4 4.5 5 5.5 6

x 10
4

1

1.5

2

2.5

3

3.5

Relative time (s)
(c)              

W
a
te

r 
m

a
s
s
  
  
  

fl
o
w

 r
a
te

 (
k
g
/s

)

3.5 4 4.5 5 5.5 6

x 10
4

1

1.5

2

2.5

3

3.5

Relative time (s)
(d)              

W
a
te

r 
m

a
s
s
  
  
  

fl
o
w

 r
a
te

 (
k
g
/s

)

3.5 4 4.5 5 5.5 6

x 10
4

65

70

75

80

85

90

95

Relative time (s)
(a)

S
o
la

r−
fi
e
ld

 o
u
tl
e
t

te
m

p
e
ra

tu
re

 (
o
C

) 
 

 

 

3.5 4 4.5 5 5.5 6

x 10
4

65

70

75

80

85

90

95

Relative time (s)
(b)

S
o
la

r−
fi
e
ld

 o
u
tl
e
t

te
m

p
e
ra

tu
re

 (
o
C

) 
 

 

 

T
oF

*
T

oF
T

oF(max)
T

oF(min)
T

oF

*
T

oF
T

oF(max)
T

oF(min)

Figure 6: Solar-field temperature and water mass flow rate in a typical operation day. Control case (a)
and (c). Open loop case (b) and (d).

pump is reduced as a consequence of using the
controller to properly choose the setpoint values
to maintain a desired volume in the distillate tank.
Since less water flow rates are required, the pump
is working at lower power levels which reduces the
electricity costs.

6 CONCLUSIONS

For a specific greenhouse demanding water for ir-
rigation purposes, to use distillate from a solar fa-
cility is a feasible process that must be controlled.
The use of appropriate control techniques could
not only assure the water demand, but also re-
duce electricity costs. The simulations shown in
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Figure 7: MED temperature and V2 valve aperture in a typical operation day. Control case (a) and (c).
Open loop case (b) and (d).

this paper deal only with a typical operating day,
but more simulations are required to evaluate the
cost throughout one year taking into account wa-
ter dependence of crops along the different sea-
sons. Future works will also include a model of the
greenhouse water consumption that will be used
with two main purposes: i) use it as a load sim-
ulator for an experimental campaign in the solar
desalination facility to evaluate the controller ex-
plained in this paper, ii) include it in the NMPC
cost function to improve the estimations of the
future control actions (the solar field temperature
setpoints).
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