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Abstract.  A new approach for solar tracking, based on deep learning techniques, is being studied and tested using 
Tensorflow, an open source machine learning framework. Tensorflow makes the implementation more flexible and 
increases the development capabilities. Tensorflow facilitates the neural network implementation on several kinds of 
devices (embedded and mobile devices, mini computers, etc.). Furthermore, Tensorflow supports different types of neural 
networks which can be tuned and retrained for particular purposes. The presented results are promising, since the retrained 
networks correctly identify the Sun and the target, with this information the system can be controlled to properly track the 
Sun's apparent trajectory without further information. 

INTRODUCTION 

In CSP technologies, the Sun Tracking Subsystem (STS) is one of the keystones to improve the performance of 
the whole system and reduce costs. Numerous researchers are attempting to change the future of STSs as revealed by 
the high number of publications related to this topic, especially in recent years [1-4]. Nowadays, several types of STSs 
can be found in the literature. They are commonly specific to the type of solar technology they were developed for 
and present some limitations regarding to the cost, operation or error correction.  

 
With the main goal of mitigating the present limitations of current STSs, a new control approach of STSs based 

on computer vision can be carried out by detecting the Sun and the tower target area by means of a camera place at 0' 
and whose optical axis is arranged parallel to the optical axis of the collector (VA). Once the elements have been 
identified, it is computed the midpoint (A') between S' and T' of the solar (Vs) and target (Vt) vectors intersections 
with the plane of an image (PC) taken by a camera aligned with the optical axis of the concentrator (VA) which also 
intersect PC in A’’. The differences between A’ and A’’ is called tracking error and it is employed as input for the 
STS controller. This approach can be used in any solar technology regardless of the type of solar tracker, as shown in 
"FIGURE 1". 

 

SolarPACES 2018
AIP Conf. Proc. 2126, 030012-1–030012-8; https://doi.org/10.1063/1.5117524

Published by AIP Publishing. 978-0-7354-1866-0/$30.00

030012-1



 
 

FIGURE 1. Central Receiver System (CRS) and Parabolic Trough-Collector (PTC) solar tracking 
 
A small mockup heliostat, whose STS was based on traditional computer vision techniques, was successfully tested 

at Plataforma Solar de Almería [5]. The computer vision approach was improved by using low-cost open hardware 
and machine learning techniques (deep learning) [6] implemented using proprietary tools (Matlab [7] and Mathematica 
[8]).  This last approach was tested at Plataforma Solar de Almerı́a (PSA) and revealed the great potential of smart 
STSs, also the authors of the present work have patented the new approach for Sun tracking systems [9]. Preliminary 
results match with the main conclusion of an extended review by Al-Rousan [2], which indicates that the use of smart 
STSs is the most promising development path for concentrated solar power and photovoltaic technologies.  

 
With the main goal of making the computer vision implementation more flexible, the approach for STSs based on 

machine learning was implemented using an open source machine learning framework, Tensorflow [10] developed 
by Google. Tensorflow facilitates on-device machine learning implementation on mobile and low-end embedded 
devices. Tensorflow also adds more flexibility, since different kinds of neural network models can be design, 
implemented and used. This work presents the preliminary results obtained with the latest approach. 

NEURAL NETWORK MODELS 

There are several pretrained models available in Tensorflow [11]. A pretrained model is a good starting point for 
creating new neural network models, since such models already learned a rich set of general features that will be useful 
for new networks. This approach also reduces the time required for the training process. 

Several pretrained models were considered in this work, see "TABLE 1". They were modified and tuned to suit 
our needs. That is to identify the Sun, target, heliostats and clouds. Guidelines on how to tune these models are given 
in [12]. 
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TABLE 1.  Neural network models 

MODEL DESCRIPTION Reference 

SSD MobileNet V1 optimized Depth- wise separable convolutions to build light 
weight deep neural networks

[13] 

SSD MobileNet V1 0.75 depth  Lighter SSD MobileNet V1 [13] 

SSD MobileNet V1 quantized 
 
SSDLite Mobilenet V2 
 
SSD Inception V2 
 
Mask RCNN Inception V2 

Quantization scheme allows that detection can be 
carried out using integer-only arithmetic 
New architecture, that improves the performance of 
models and benchmark marks 
Inception block replaces the extra layers in SSD  
Mobilenet V2 
Simple, flexible, and general framework for object 
instance segmentation

[14] 
 
[15] 
 
[16] 
 
[17] 

 

TRAINING 

A small heterogeneous training image set (350 images) of the CESA central tower system located at PSA was 
used.  Four object classes (heliostat, target, Sun and cloud) were labeled in the image set. "FIGURE 2" shows some 
images of the training image set. 

 

 

 

FIGURE 2. Some images from the training image set 
 
Neural model training is a iterative process, among all the training strategies provided by Tensorflow, the 

RMSPropOptimizer has been employed in this study. It implements an adaptive version of Stochastic Gradient 
Descent called RMS Prop "Root Mean Squared Propagation. "FIGURE 3" shows the evolution of the neural model 
results, which was trained from 0 to 15000 iterations (epochs). 
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FIGURE 3.  Result evolution with training 
 
 
Neural network training is a computationally expensive process. In order to reduce the training time, the computing 

facilities of Extremadura Research Centre for Advanced Technologies (CETA-CIEMAT) were used. A Graphics 
Processing Unit (GPU) cluster with Compute Unified Device Architecture (CUDA) support was used for training the 
networks, see "FIGURE 4". The average training time was around 24 hours. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

FIGURE 4. Computing facilities of Extremadura Research Centre for Advanced Technologies (CETA-CIEMAT) 
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VALIDATION 

Besides the training image set, there is an independent image set for validation (25 images). This set of images is 
used to validate the neural network results and provides information about the mean average precision (mAP) and 
inference time (speed of processing an image on CPU in this case). Mean average prediction is computed as the ratio 
of true object detections to the total number of objects that the classifier predicted, mAP is always calculated over a 
validation dataset. The predicted box is considered a true detection if a predicted box shares more than a percentage 
of its pixels with the ground-truth box (overlap criterion). In this work, the overlap criterion is defined as an 
Intersection-over-Union (IoU) greater than 0.5. Values of mAP close to 1.0 show high probability that whatever the 
classifier predicts as a positive detection is in fact a correct prediction. Inference time and mAP are common metrics 
to evaluate object detectors, for that reason they are shown for the evaluation of the neural networks shown in 
"TABLE 2". These metrics are provided by a Tensorflow tool called Tensorboard, which provides detailed 
information about the neural network learning process. 

 

TABLE 2.  Neural network validation metrics.  
MODEL Speed (ms) Precision (mAP@0.5IoU) 

SSD MobileNet V1 optimized 100 0.63
SSD MobileNet V1 0.75 depth  90 0.78
SSD MobileNet V1 quantized 
SSDLite Mobilenet V2 
SSD Inception V2 
Mask R-CNN Inception V2 

110 
400 
350 
1100 

0.79 
0.35 
0.41 
0.55 

 
 

 
"TABLE 2" reveals that "SSD MobileNet V1 0.75 depth" is the fastest neural model, whereas "SSD MobileNet 

V1 quantized" is the most accurate. "SSD MobileNet V1 optimized" also show a good behavior. The rest of the models 
show similar results, although they are slightly slower or less precise. This fact reveals that better configuration of the 
model or training parameters may improve the results given by those networks. 

 It should be noted that "Mask R-CNN Inception V2" is not only an object detector, it is also a semantic 
segmentator, that is it provides object masks, not only bounding boxes. This could offer new capabilities to the smart 
STS approach, while achieving a good precision mark. 

 

IMPLEMENTATION 

The previously introduced smart STS approach has been mainly implemented for two kinds of devices: low-end 
embedded and mobile devices, although it also works in common computers. Tensorflow is the machine learning 
framework. 

 
 Embedded devices: A Raspberry Pi 3 model B+ and Pi camera was the hardware used. Software was 

implemented using the open source programming language Python. This is an open-source and low-cost 
implementation ideal to test and evaluate this approach in real facilities, since this kind of devices can control 
and communicate with the solar collectors. 
 

 Mobile devices: An app for iOS and Android devices was also implemented. This app is multiplatform and 
can be also executed in common computers (Linux, macOS and Windows operating systems). The app is 
programmed in the V-Play engine [18], which facilitates the app deployment to several devices and operating 
systems. V-Play is a Standard Developer Kit (SDK) based on the Qt framework [19]. The programming 
languages used were C++ for the computer logic and QML for the Graphical User Interface (GUI). This app 
is intended to be used for easily demonstrating the concept and as an educational resource. It might be also 
used for other purposes that must be studied, for instance for on-site testing and calibration. 
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EXAMPLES 

"FIGURE 5" shows an augmented reality image taken from Raspberry Pi in the CESA solar field at PSA. The 
distance to the tower was more than 400 m. The objects detected are shown in colored boxes (Sun, target and 
heliostats). The numerical values represent the confidence levels of the detections, it is computed as the softmax 
probability (Neural Network output) of each of bounding boxes being on object.   

 
As commented before, from the Sun (S0) and target (T0) box detections the black cross and gray circle positions 

can be computed. The black cross represents the solar collector aiming point (A’), whereas the gray circle represents 
the correct Sun tracking point A’’.  The Sun tracking error can be computed as the distance between the black cross 
and the gray circle. This error is used to compute the control signal [6] and to properly aim the solar collector to follow 
the Sun's apparent trajectory. 

 
 

 

FIGURE 5. Augmented reality image taken and processed from Raspberry Pi at CESA solar field 
 
 
"FIGURE 6" shows an augmented reality image taken from a mobile device in the CESA solar field at PSA. This 

app presents the same behavior than the developed software for embedded devices. Several objects were detected in 
colored boxes, the semi-transparent gray circle represents the correct Sun tracking point, its size matches the target 
size. The red dot represents the current heliostat aiming point (center of the screen), therefore the red dot must be 
placed inside the gray circle to reflect the Sun irradiance onto the target. 
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FIGURE 6. Augmented reality image processed on a mobile device at CESA solar field 
 

CONCLUSSION AND FUTURE WORK 

The new machine learning framework is faster and more accurate than the original implementation [6] according 
to results from "TABLE 2". The rapid growth of Tensorflow and the large number of contributions from the open 
community augurs a substantial improvement of the marks obtained in a short time. 

"SSD MobileNet V1 optimized", "SSD MobileNet V1 quantized" and "SSD MobileNet V1 0.75 depth" show the 
best behavior in terms of speed and precision of all the evaluated models. 

The new framework is open and more flexible, it allows implementing the smart STS approach in almost every 
kind of device. Embedded and mobile implementations have been carried out in this work.   

The good results obtained in terms of speed and precision, make it possible to use this approach to design new 
control strategies based on artificial intelligence and computer vision that can take into account key factors for solar 
collector such as block, shadow and cloud detections.   

Ongoing work includes training and validating the neural networks with larger image sets, evaluate new neural 
networks and further optimize the approach implementations. 

Future work includes the autonomous control of a heliostat using the embedded device implementation in order to 
estimate the control accuracy in terms of mrad, as well as determine the optimal image resolution for minimizing such 
error. 
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