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Abstract. The progressive contribution of renewables is key to decarbonize electricity systems. However, high shares of 
intermittent renewables remain a worldwide concern. Least Cost Capacity Expansion models are heavily led by short-
sighted cost criteria and they do not take into account the feedback on the hourly electricity markets influencing 
investments. Their outcomes are often unrealistic and cannot come true with the current market rules, as they would require 
huge hidden subsidies because the captured price by non-dispatchable renewables would be often below the market price. 
Inductive approaches – based on actual hourly production from renewables and assigning the expected cost trends to each 
one of the technologies – would yield more realistic, actionable solutions. The aim of this paper is to present a planning 
approach for the new installed capacity, Inductive Projection Planning (IPP), an advanced tool that optimizes with respect 
to multiple objectives, has been developed using the Spanish case as an example. The necessity of CSP for a true energy 
transition in shown, avoiding excessive fossil-fueled backup generation. 

INTRODUCTION 

Decarbonization of human activities is the main and urgent challenge that we face today. Decarbonizing the 
electrical sector with renewables is becoming more and more urgent as reducing CO2 emissions in the other two energy 
sectors, heat and transportation, are not as easy to accomplish using current technologies. Moreover, renewable 
electrical technologies are currently cheaper than fossil fuel plants. 

 
High penetration of cheap but non-dispatchable renewable generation technologies, like wind and photovoltaics 

(PV), along with the progressive decommissioning of conventional power plants cause fundamental concerns to arise 
on security of supply to policy makers and electrical system operators.  In addition, a generation fleet consisting mostly 
of variable renewables will create other important concerns in terms of grid stability and affordable ramps for the 
backup plants.  

 
The main issue is whether the fleet of renewable generation units will be able to respond to the demand needs, 

particularly at the times of peak demand. New large-storage concepts that can seasonally decouple the collection and 
the delivery of energy is a kind of never-ending economic utopia. Besides, new dams seem to be more and more 
difficult to deploy. There are only two mature renewable technologies that are dispatchable in real-time settings: hydro 
and biomass, but their possibilities to significantly increase their shares are rather limited. 

 
Natural complementary of renewable energy sources along with proactive management of demand and 

interconnections could mostly solve the supply concerns in renewable based generation fleets.  The primary role of 
the new generation of Solar Thermal Electricity (STE) plants would be to contribute – contribute to the bulk of solar 
electricity production in sunny countries by complementing PV production – to the bulk of the solar electricity 
generation in sunny countries. STE/CSP plants can provide synchronous and absolutely firm supply, with no 
deviations for the day-ahead program from sunset until sunrise next day.  
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Considering the issues and additional investments that dysfunctionalities of a large penetration of non-dispatchable 
renewables will cause, the services that the thermal storage of Solar Thermal Electricity (STE) plants can provide to 
the system – strategic reserve, curtailments collection, price arbitrage – should constitute additional relevant reasons 
to push the deployment of STE plants in a more balanced share with PV when planning the generation fleet in the 
Energy Transition process. 

THE STARTING POINT: PROTERMOSOLAR TRANSITION REPORT 

Renewable generation technologies are quite different from each other. Policy Makers must understand their 
differences to achieve an optimum generation structure with the minimum fossil backup, as markets and expansion 
models cannot do it. In June 2018, Protermosolar presented a report (1) comparing the advantages of using Inductive 
Projection Planning (IPP). IPP projects, on hourly basis, the historical production data from all renewables, with some 
fine tuning to take into account the improved performances of new equipment’s, implementing the dispatch flexibility 
of STE and Biomass plants through a rational dispatch criteria to reduce emissions (see Figure 1).  

FIGURE 1. Rational of the Protermosolar Report (the proposed fleet could have been modified to achieve better results)  
 

Meeting the demand at any time is about programming the dispatch of available and feasible generation units (see 
Figure 2). Wind and sun will be the pillars of electricity generation in the future. Large hydro and biomass will also 
contribute with their dispatch flexibility. But wind parks and PV plants generate only when the resource is available, 
therefore the appropriate generation pieces should be put together to meet the demand avoiding as much CO2 emissions 
as possible. 
 

 

 

FIGURE 2.   Example of how the demand will be hourly covered on a particular day with the available generation units (1) 

The goal of planning is to decarbonize the generation system, ensure quality of supply and grid stability at an 
affordable cost. Until now, Planners and Policy Makers relied on the results of Least Cost Capacity Expansion (LCCE) 
models and they were right when mostly conventional power plants were considered. But these models don’t 
understand properly neither the value and constraints of the different renewable technologies nor the impact on 
investment decisions caused by the low market prices that would result in their so called least cost generation fleets. 
Understanding the complementary among renewables allows for a much more “common sense” fleets and associated 
dispatch strategy, which can be conceived to achieve a stronger emission reduction. That’s why we recommend an 
inductive bottom-up approach for planning rather than a deductive one. Thus, a sound combination of technologies 
allowing for an advanced decarbonization can be proposed. 

 
LCCE models (typical agnostic approach) results in never ending fossil backup and emissions, unrealistic business 

development, high curtailments and high hidden system’s overall costs while using common sense inductive 
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approaches the achievement of decarbonization goals with higher renewable contribution, reduced curtailments and 
also lower overall system’s cost can be reached. LCCE models focus exclusively on price forgetting many other 
aspects, which finally impact on the total system cost. They do not take advantage of the operational complementarity 
among different renewable technologies, which can be done through a rational inductive planning.  

 
Using the actual data of renewable production on the past years one can demonstrate that the demand can be 

satisfied by a proper fleet with a large share of renewable plants and that grid stability requirements can be also 
accomplished. As the price for most of the new capacity is going to be awarded through auctions, we have assumed 
that the proper way to deploy new STE plants will be through auctions as well, but requesting a dispatch profile that 
complements the PV production.  

 
The results in the first attempt – just by proposing a common sense and more balanced mix with complementary 

dispatch profile between PV and CSP – were very impressive: much lower emissions, much lower curtailments and 
exports, no need of nuclear and coal by 2030 and, surprisingly, lower cost than the official mix. The results of our 
study were highly influential in the current Spanish Energy and Climate Plan, which included 5 GW of new STE 
plants by 2030 (2). 

CIEMAT OPTIMIZATION TOOL APPLYING ARTIFICIAL INTELLIGENCE  

Researchers at CIEMAT – Plataforma Solar de Almería – were encouraged by this inductive approach and applied 
artificial intelligence techniques to perform an automatic optimization using genetic algorithms. The optimization 
estimates the optimum new power to be installed for PV (Ppv), wind (Pwind) and CSP (Pcsp) power plants that at least 
satisfy the demand and minimize the curtailments (curtailments) at the lowest possible cost (cost). The first results 
were presented at GENERA 2020 fair in Madrid (3). 

 
Among the different possibilities to couple cost with any other variable to find the optimum fleets we have selected 

“curtailments” as the second most important criteria to be considered. The curtailment level is the best indicator 
regarding impacts on investment motivations, hidden cost of grids etc., which can’t be modeled but that have to 
seriously considered by policy makers when making their choices. 

 
The next three following subsections describe the genetic algorithm, the electric mix evaluation in order to 

calculate the generated power, curtailments, electricity cost and CO2 emissions for each evaluated electric mix 
configuration, and the developed optimization software tool. 

Artificial Intelligence: Multi-Objective Genetic Algorithms 

A genetic algorithm, that belongs to the larger class of evolutionary algorithms, is used to calculate the optimum 
solutions. Genetic algorithms are inspired in biological operators such as crossover, selection and mutation based on 
concepts developed in Darwin’s theory of evolution.  

In a genetic algorithm, a population of candidate solutions (called individuals) is evolved toward better solutions. 
Each candidate solution has a set of properties, also called genome, chromosomes or genotype (Ppv, Pwind, Pcsp) (see 
Figure 3(a)). The evolution is an iterative process and usually starts from a population of randomly generated 
individuals, the population of each iteration is called a generation. The fitness of every individual in the population is 
evaluated at each generation. The fitness is determined by the objective functions (curtailments and cost). If there is 
more than one objective function, multi-objective algorithms must be used. 

Multi-objective optimization problems deal with conflicting objectives, while one objective increases the other 
decreases or vice-versa. There is not a unique global solution but a set of solutions. Some individuals may be unfeasible 
due to restrictions (satisfy demand). A solution dominates another solution when it is better with respect to every 
objective. The non-dominated set of solutions are those that are not dominated by any member of the population. The 
non-dominated set of feasible solutions are the optimal set of solutions and they are arranged in the Pareto front (see 
Figure 3(b)).   
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(a) One iteration of the genetic algorithm (b)  Pareto front 
 

FIGURE 3. Genetic algorithm 

The more fit non-dominated individuals are selected from the current population, other individuals can be also 
selected to keep diversity in the population in order to avoid local optimum solutions. Each selected individual’s 
genome is modified applying crossover and randomly mutated with a certain probability to form a new generation. 
The new generation of candidate solutions is then used in the next iteration of the algorithm. The algorithm commonly 
finishes when either a maximum number of generations or a satisfactory fitness level is reached for the current 
population. This works uses the Non-dominated Sorting Genetic Algorithm II (NSGA-II) (4), a popular and fast multi-
objective genetic algorithm. 

Electric Mix Evaluation 

Each individual (Ppv, Pwind, Pcsp) in the population represents an electric mix configuration and must be evaluated 
to determine its feasibility (satisfy demand) and its fitness through the objective functions (curtailments and cost), 
which will be optimized. 

Demand, Generation, Curtailments and CO2 Emissions 

The demand is hourly given for the whole year based on historical data and the predicted increment. The generation 
of each energy source is also given by historical data and proportional to the installed power. The following three 
steps are repeated for each hour of the year. As explained before, the new STE fleet should result after auction 
processes but its dispatch profile must be fixed in the call. 

 
1. The hourly energy generation of hydraulic, nuclear, cogeneration, residues, PV, wind and current CSP 

(existing CSP) is summed up. New CSP energy (CSP with 12-hour thermal storage) is stored as much as 
possible, the remaining new CSP energy is therefore added to the current generated electricity. 

2. If the demand is not satisfied, CSP storage is summed up as needed. If the demand cannot be covered, 
then combined cycles are used up to their maximum power. If there is still demand to cover, electricity 
is imported up to its maximum power. If the demand is finally not covered the solution is marked as 
unfeasible and directly discharged without further calculations. 

3. If the demand is already covered and there are curtailments, such curtailments are exported up to the 
maximum power capacity, otherwise they finally produce curtailments. 

4. If the solution is valid, curtailments and CO2 emissions are accumulated, and the process is repeated for 
the next hour of the year until the last hour of the year is reached. 

 
If the solution is valid, it is ranked according to the accumulated curtailments and the annual average electricity 

cost, this last calculation is described in the next subsection. 
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Annual Average Electricity Cost 

The annual average electricity cost can be calculated considering the hourly electricity generation in the previous 
subsection and the electricity cost. For each energy source, if there are not curtailments, electricity cost is given by 
Table 1. If the energy source generates curtailments, the previous cost is adjusted considering Equation 1, where the 
nominal cost is given in Table 1. 

 
TABLE 1.  Average generation, import and export costs assumed for 2030 

Technology Cost (€/MWh) Technology Cost  (€/MWh) 
Hydraulic 20 Biomass 60 
Pumping 25 Cogeneration 70 
PV 30 Combined Cycles 74 
Wind 40 Residues 80 
CSP 55 Import / Export 60 / 40 

 

 

EQUATION 1.  Adjusted electricity cost as a function of curtailments 

Optimization Software Tool 

The optimization software tool is programmed in Python (5) and makes used of several libraries (see Figure 4). 
The tool downloads data from Red Eléctrica de España – Sistema de Información del Operador del Sistema (REE-
ESIOS) (6) server, performs the optimization tasks and presents the results in a generated website. The main used 
Python libraries are briefly described as follows. 
 

 Request (7) is used to download demand and electric generation data from REE-ESIOS through API calls. 
 Pandas (8) is used to perform transformations and calculation over time series data. 
 NumPy (9) is used for scientific calculations. 
 DEAP (10) is a framework for distributed evolutionary algorithms. The genetic algorithm is implemented 

using this framework. 
 Multiprocessing (11) is used together with DEAP to parallelize the calculation of individuals, taking 

advantage of the CPU available cores. 
 Plotly (12) provides a set of different graphs for data science. 

 

FIGURE 4. Software optimization tool 
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OPTIMIZATION RESULTS 

The set of non-dominated solutions, being chosen as optimal, defines the “Pareto front” where no objective can be 
improved without further sacrificing the others. For two objectives, the Pareto front can be represented in a two-axis 
chart where the fleet would have the minimum cost for a given value of the other variable. The cloud of points 
represents just some samples of all the possible potential generation fleet structures. 

 
In Figure 5, the starting point of the Protermosolar report can be seen in red. It is close to the Pareto front and has 

a very low level of curtailments. The optimization already considers the impact of curtailments in the required 
remuneration of non-dispatchable renewables. That is why the Pareto front has a “U” shape. Fleets with large 
curtailments will cause technical dysfunctionalities in the system and could require further investments on frequency 
and voltage control equipment’s. 

 
The data corresponding to three specific cases can be seen in the picture. It is important to mention that CSP has a 

relevant contribution in all cases along the Pareto front. Looking the rather small differences in cost, it would be 
advisable to select generation fleets, which will prevent from high curtailments in order to avoid technical and market 
issues that would have further actual impacts on costs. For example, the curtailments happen after the export capacity 
would have been saturated but, most probably in those cases, the resulting export levels would have been unfeasible 
and, therefore, the curtailments would have been much higher. The hidden costs regarding grid stability issues, with 
such high curtailment levels, would have been very important as well. Ancillary services would have been also more 
demanded, etc. Therefore, the additional costs on top to the ones considered by the program would have been actually 
higher. In addition, the impact in market prices, in those points of the Pareto front with high curtailment would prevent 
investors for promoting new plants unless high subsidies were assured. That’s why we highly recommend to make the 
choices in the low curtailment part of the Pareto front. 

 

FIGURE 5. Pareto front with optimized renewable fleets: Cost vs Curtailments 

The software tool provides detailed information about the evaluation of any mix configuration. As an example, the 
CIEMAT electric mix configuration for 2030 is considered in this section. Table 2 and 3 summarize the main results, 
whereas Figure 6 show the installed power and electricity generation distribution among all electric sources. 

 
 

TABLE 2.  Installed power and average electricity cost 
Installed PV 
power (GW) 

Installed Wind 
power (GW) 

Installed CSP 
power (GW) 

Total installed 
power (GW) 

Installed renewable 
power (GW) 

Average electricity 
cost (c€/kWh) 

19.50 43.50 15.36 130.68 106.41 (81%) 4.78 

TABLE 3.  Electricity generation and emissions 
Demand 
(TWh) 

Generated  
elec. (TWh) 

Exported  
elec. (TWh) 

Imported  
elec. (TWh) Curtailments (TWh) CO2 equivalent 

emissions (ktons) 
296 281.15 4.24 19.43 0.34 2,264.19 

PV:
Wind:
CSP:

25 GW
33 GW
20 GW

Cost:
Curtail.:

4.88 c€/kWh
0.83 TWh

Protermosolar
PV:
Wind:
CSP:

19.5 GW
43.5 GW
15.4 GW

Cost:
Curtail.:

4.78 c€/kWh
0.34 TWh

CIEMAT - Genera 2020
PV:
Wind:
CSP:

44.3 GW
50.0 GW
10.2 GW

Cost:
Curtail.:

4.46 c€/kWh
15.71 TWh

Minimum cost
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(a) Installed power distribution (b)  Electricity generation distribution 
 

FIGURE 6. Installed power and electricity generation distribution 

 Figure 7 shows the results for the CIEMAT’s choice in the case of a favorable week for renewable production 
(on the top) and another less favorably case in the bottom. The complementary between the PV and the STE production 
can be easily seen. Exports in both cases caused by PV in good sunny days (on the top) or by wind (in the bottom) can 
be seen as well. Little curtailments can be also observed in the first day of the graph at the bottom. 

                                  (a) 22 – 28 May, 2030 

(b) 13 – 19 November, 2030  

FIGURE 7. Hourly electricity production 

CONCLUSION 

The summarized results in both cases, Protermosolar and CIEMAT choices, can be seen in Table 4. Both choices 
are much better than the results from LCCE models (13). 
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TABLE 4.  Protermosolar and CIEMAT electric mix comparison 

 Protermosolar CIEMAT Expert Committe using 
LCCE model (13) 

Electric demand 296 TWh 296 TWh 296 TWh 
Installed power 130 GW 130.4 GW 147 GW 
Renewable power 106 GW 106.4 GW 106 GW 
PV power 25 GW 19.5 GW 47.2 GW 
Wind power 33 GW 43.5 GW 31 GW 
CSP power 20 GW 15.4 GW 2.3 GW 
Biomass power 5 GW 5 GW 2.6 GW 
Emissions (1) 4,991 kt CO2 4,356 kt CO2 12,593 kt CO2 
Curtailments 830 GWh 344 GWh 4,600 GWh 
Cost 4.88 c€/kWh 4.78 c€/kWh 5.20 c€/kWh 

 

(1) Combined cycles and residues are considered for the calculation of the CO2 equivalent emissions 
 

The Inductive Projection Planning approach is a robust and sound methodology, which will facilitate achieving 
more ambitious goals in terms of renewable penetration and emission reduction, mainly thanks to the contribution of 
STE plants in Sunbelt countries. The contribution of CIEMAT/PSA using artificial intelligence and genetic algorithms 
represents an outstanding improvement as compared with the initial Protermosolar methodology. It provides an 
automatized approach to find a wide set of optimum fleets, leaving final decisions to the additional weighting criteria 
of planners. We want to conclude with a wise advice to policy makers in sunny countries: Try it! The planning would 
be surely improved and CSP will naturally appear in the picture. 

REFERENCES 

1. Protermosolar, Informe de Transición del sector eléctrico. Horizonte 2030, https://protermosolar.com. 
2. Ministerio para la Transición Ecológica y el Reto Demográfico (MITECO), Plan Nacional Integrado de Energía 

y Clima (PNIEC) 2021-2030, 2020, https://www.miteco.gob.es/es/prensa/pniec.aspx. 
3. J. Bonilla, Herramienta para optimizar el mix eléctrico aplicando técnicas de inteligencia artificial. GENERA 

2020, Madrid. 
4. K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-

II," in IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182-197, April 2002, 
https://doi.org/10.1109/4235.996017. 

5. Python Core Team (2020). Python: A dynamic, open source programming   language. Python Software 
Foundation. https://www.python.org/. 

6. Red Eléctrica de España (REE), Sistema de información del operador del sistema (ESIOS) 
https://www.esios.ree.es/. 

7. Request: HTTP for Humans, https://requests.readthedocs.io/en/master/. 
8. McKinney, Data structure for statistical computing in Python Proceedings of the 9th Python in Science 

Conference, Volume 445, 2010, https://conference.scipy.org/proceedings/scipy2010/pdfs/mckinney.pdf. 
9. Stéfan van der Walt, S. Chris Colbert and Gaël Varoquaux. The NumPy Array: A Structure for Efficient 

Numerical Computation, Computing in Science & Engineering, 13, 22-30 (2011), 
https://doi.org/10.1109/MCSE.2011.37. 

10. Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc Parizeau and Christian Gagné, 
“DEAP: Evolutionary Algorithms Made Easy”, Journal of Machine Learning Research, pp. 2171-2175, no 13, 
jul 2012. 

11. M.M. McKerns, L. Strand, T. Sullivan, A. Fang, M.A.G. Aivazis, Building a framework for predictive science, 
Proceedings of the 10th Python in Science Conference, 2011, http://arxiv.org/pdf/1202.1056. 

12. Plotly Technologies Inc. Collaborative data science. Montréal, QC, 2015. https://plot.ly. 
13. Comisión de Expertos de Transición Energética, Análisis y propuestas para la descarbonización, 2018. 

http://www6.mityc.es/aplicaciones/transicionenergetica/informe_cexpertos_20180402_veditado.pdf. 

050001-8

https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/MCSE.2011.37

